Автор:
Лаззат Дюсембаева (Астана, Казахстан)
В процессе обучения математике важное место отводится организации повторения изученного материала. Необходимость повторения обусловлена задачами обучения, требующими прочного и сознательного овладения ими.
Указывая на важность процесса повторения изученного материала, современные исследователи показали значительную роль при этом таких дидактических приёмов, как сравнение, классификация, анализ, синтез, обобщение, содействующее интенсивному протеканию процесса запоминания. При этом вырабатывается гибкость, подвижность ума, обобщённость знаний.
В процессе повторения память у учащихся развивается. Эмоциональная память опирается на наглядно–образные процессы, постепенно уступает памяти с логическими процессами мышления, которая основана на умении устанавливать связи между известными и неизвестными компонентами, сопоставлять абстрактный материал, классифицировать его, обосновывать свои высказывания.
Повторение учебного материала по математике осуществляется во всей системе учебного процесса: при актуализации знаний – на этапе подготовки и изучения нового материала, при формировании учителем новых понятий, при закреплении изученного ранее, при организации самостоятельных работ различных видов, при проверке знаний учащихся.
О том, что надо учитывать возрастные особенности учащихся, говорится всюду, но не всегда указывается, что это означает, какие особенности надо учитывать и как их надо учитывать. Между тем, надо иметь в виду, что возрастные особенности – это не нечто неизменное и вечное, что присуще ученикам определённого возраста. Сами эти особенности довольно резко меняются со временем. Скажем, возрастные психологические особенности ученика младшего школьного возраста теперь и лет 30 тому назад совсем не одни и те же. Точно также современный подросток весьма существенно отличается от подростка довоенных лет.
Рассмотрим некоторые психологические особенности современного ученика, имея в виду лишь те его особенности, которые важно учитывать в процессе обучения математике.
Ученик – это растущий, развивающийся человек. Придя в школу в шесть лет, он заканчивает её в 17 лет вполне сложившимся человеком юношеского возраста. За эти десять лет обучения ученик проходит огромный путь физического, психического и социально–нравственного развития.
Подростковый возраст – это весьма сложный, таящий в себе опасность кризисных явлений, период в жизни ученика. В этот период организм ребёнка претерпевает кардинальные изменения. Развёртывается процесс полового созревания. С этим процессом связано возникновение у подростка физического ощущения собственной взрослости. У него возникает представление о себе уже не как о ребёнке, он стремится быть и считаться взрослым. Отсюда у подростка возникает новая жизненная позиция по отношению к себе, к окружающим людям, к миру. Он становится социально активным, восприимчивым к усвоению норм ценностей и способов поведения, которые существуют среди взрослых.
Поэтому период подросткового возраста характерен тем, что здесь начинается формирование морально–нравственных и социальных установок личности ученика, намечается общая направленность этой личности.
Если подростковый возраст есть начало внутреннего перехода ученика от положения объекта обучения и воспитания, которым он был в младшем школьном возрасте, к положению субъекта этого процесса, то в юношеском возрасте ученик становится (во всяком случае, должен становиться) уже подлинным субъектом своей деятельности в учебно–воспитательном процессе.
В то же время ученики ещё сохраняют материальную зависимость от родителей. Главным в их жизни становится подготовка к будущей самостоятельной, взрослой жизни, подготовка к труду, выбор жизненного пути, профессии.
Особо следует отметить стремление учеников старшего школьного возраста к автономии, к эмоциональной и ценностной самостоятельности, к независимости, к самоуважению, между тем как для подростков характерна зависимость от группы своих сверстников. Подросток весьма податлив влиянию сверстников. Внутренне отойдя от родителей, он ещё не пришёл к своей индивидуальности, которая обретается в юношеском возрасте. Если подростка волнует вопрос: «Неужели я не такой, как все?», то юношу: «Неужели я такой, как все?».
Учителю всё это надо иметь в виду и учитывать в своей работе.
Выше мы установили, что ученик в процессе обучения математике из объекта этого обучения постепенно становится его субъектом. Что это значит? В чём выражается различие между объектом и субъектом обучения? Ведь в том и в другом случае ученик как–то учится, приобретает знания, умения.
Действительно, и когда ученик является лишь объектом обучения математике, и когда он становится субъектом этого процесса он выполняет задания учителя, решает задачи, повторяет изученный материал и т.д., т.е. он учится. Все различия между учением ученика в роли объекта и его же учением в роли субъекта состоят в том, ради чего он это делает.
Человек, ученик есть деятельное существо. Он всегда что–то делает, участвует в какой–то деятельности. Но ученик участвует во многих различных деятельностях, совершает разные действия. Для того чтобы ученик эффективно учился, он должен совершать не любые действия, а вполне определённые. Встаёт вопрос: почему ученик совершает именно эти действия, а не другие, что побуждает совершать эти действия, что направляет и регулирует его деятельность в процессе обучения? Иными словами, что мотивирует – побуждает и направляет – деятельность ученика.
Только разобравшись в этом, мы сможем понять, в чём различия между объектом и субъектом процесса обучения. Кроме того, в этом надо разобраться ещё и потому, а может быть главным образом потому, что учитель должен научиться управлять деятельностью учащихся в процессе обучения, а для этого он должен формировать у них нужную мотивацию. Ведь в противном случае, если этого не делать, становится вполне реальной опасность, о которой говорил В.А. Сухомлинский:
«Все наши замыслы, все поиски и построения превращаются в прах, если нет у учащихся желания учиться.»
Поэтому учитель должен вызвать у учащихся такое желание, а это значит, что он должен формировать у них соответствующую мотивацию.
Что такое мотивация, как она формируется у человека? Под мотивацией понимают обычно совокупность побуждений к деятельности.
Однако когда деятельность уже началась, то она имеет определённую цель. Цель – это то, чего сознательно хочет достигнуть человек в результате этой деятельности. Но между целью деятельности и её побуждениями не всегда существует полное соответствие. Когда оно имеется, то говорят, что эта деятельность имеет смысл; в противном случае, когда цель деятельности и вызвавшие эту деятельность побуждения не соответствуют друг другу, то говорят, что деятельность не имеет смысла, лишена для данного человека смысла.
Итак, ученик всегда является объектом деятельности в процессе обучения, а субъектом этой деятельности он становится тогда, когда сознательно принимает объективные цели деятельности за свои личные цели. Очевидно, что в последнем случае обучение является наиболее эффективном, только в этом случае учитель может легко и с удовольствием полностью осуществить цели и задачи обучения.
Повторение учебного материала требует от учителя творческой работы. Он должен обеспечить четкую связь между видами повторения, осуществить глубоко продуманную систему повторения.
Овладеть искусством организации повторения – такова задача учителя, от её решения во многом зависит прочность знаний учащихся.
Таким образом, в ходе исследования подтвердилась наша гипотеза: предлагаемая методика обобщающего повторения способствует повышению качества знаний учащихся.
Л итература:
-
Аракелян О.А. «Некоторые вопросы повторения математики в средней школе» М. Учпедгиз, 1960.
-
Басова Л.А., Шубин М.А., Эпштейн Л.А. Лекции и задачи по математике: из опыта работы летней физико–математической школы в Карелии. М. 1981.
-
Беляев Е.А., Киселёва Н.А., Перминов В.Я. Некоторые особенности развития математического знания. М. 1975.
-
Богоявленский Д.Н., Менчинская Н.М. Психология усвоения знаний в школе. М., 1959.
-
Глейзер. История математики в школе (4–6 кл.). М. «Просвещение», 1981.
-
Жуков Н.И. Философские проблемы математики. Минск, 1977.
-
Кабанова–Меллер Е.Н. Психология формирования знаний и навыков. М. 1962.
-
Карри Х.Б. Основания математической логики. М. 1969.
-
Кедровский О.И. Методологические проблемы развития математического познания. Киев, 1977.
-
Кудрявцев Л.Д. Современная математика и её преподавание. М. 1981.
-
Петров Ю.Н. Философские проблемы математики. М. 1973.
-
Поба Д. Математика и правдоподобные рассуждения. М. 1975.
-
Славков С. Аспекты на математические познания. София. 1971.